
Kanika

Assistant Professor

CSE, MAIT

Maharaja Agrasen University Baddi

OPERATING SYSTEM

“DEADLOCK”

• Deadlock

• Deadlock Prevention

• Deadlock Avoidance

• Deadlock Detection & Recovery

2

Introduction

DEADLOCK

If two or more processes are waiting on
happening of some event, which never happens,
then we say these processes are involved in
deadlock then that state is called Deadlock.

3

• Traffic only in one direction.

• Each section of a bridge can be viewed as a resource.

• If a deadlock occurs, it can be resolved if one car backs up
(preempt resources and rollback).

• Several cars may have to be backed up if a deadlock occurs.

4

Bridge Crossing Example

DEADLOCK NECESSARY
CONDITIONS

ALL of these four must happen simultaneously for a deadlock
to occur:

Mutual exclusion
One or more than one resource must be held by a process in a

non-sharable (exclusive) mode.

Hold and Wait
A process holds a resource while waiting for another resource.

No Preemption
There is only voluntary release of a resource - nobody else can

make a process give up a resource.

Circular Wait
Process A waits for Process B waits for Process C waits for

Process A.
5

RESOURCE ALLOCATION
GRAPH

A mathematical way to determine if a deadlock has, or may occur.

G = (V, E) The graph contains nodes and edges.

V Nodes consist of processes = { P1, P2, P3, ...} and resource types

 { R1, R2, ...}

E Edges are (Pi, Rj) or (Ri, Pj)

An arrow from the process to resource indicates the process is requesting the
resource. An arrow from resource to process shows an instance of the resource has
been allocated to the process.

Process is a circle, resource type is square; dots represent number of instances of
resource in type. Request points to square, assignment comes from dot.

6

Pi

Ri

Pi

Ri

Pi

 If the graph contains no cycles, then no process is deadlocked.

 If there is a cycle, then:

a) If resource types have multiple instances, then deadlock MAY exist.

b) If each resource type has 1 instance, then deadlock has occurred.

7

RESOURCE ALLOCATION

GRAPH

Resource

allocation

graph P2 Requests

R3

R3 Assigned to P3

8

Resource allocation graph

with a deadlock.

Resource allocation graph

with a cycle but no deadlock.

HOW TO HANDLE DEADLOCKS –

GENERAL STRATEGIES

There are three methods:

 1) Deadlock Ignorance (Ostrich Method): Ignore

Deadlocks

2) Deadlock Prevention: Prevent any one of the 4

conditions from happening.

 3) Deadlock Avoidance: Banker’s Algorithm Allow

deadlock to happen. This requires using both.

4) Deadlock Detection and Recovery: Detect and

Recover the deadlock.
9

Do not allow one of the four conditions to occur.

Mutual exclusion:

a) Automatically holds for printers and other non-sharables.

b) Shared entities don't need mutual exclusion.

c) Prevention not possible, since some devices are intrinsically non-sharable.

Hold and wait:

a) Collect all resources before execution.

b) A particular resource can only be requested when no others are being held. A

sequence of resources is always collected beginning with the same one.

c) Utilization is low, starvation possible.

10

Deadlock Prevention

No preemption:

a) Release any resource already being held if the process can't get an

additional resource.

b) Allow preemption - if a needed resource is held by another process,

which is also waiting on some resource, steal it. Otherwise wait.

Circular wait:

a) Each of these prevention techniques may cause a decrease in

utilization and/or resources. For this reason, prevention isn't

necessarily the best technique.

b) In general way we can easily implement the Prevention.
11

Prior knowledge of resource request is needed, to determine if we are entering

an "unsafe" state.

Possible states are:
Deadlock No forward progress can be made.
Unsafe state A state that may allow deadlock.

Safe state A state is safe if a sequence of processes exist such that

there are enough resources for the first to finish, and as

each finishes and releases its resources there are enough

for the next to finish.

The rule is simple: If a request allocation would cause an unsafe state, do not
honor that request.

NOTE: All deadlocks are unsafe, but all unsafe are NOT deadlocks.

12

Deadlock

Avoidance

Let's assume a very simple model: each process declares its maximum needs. In this case, algorithms exist that
will ensure that no unsafe state is reached.

Do these examples:

Consider a system with: five processes, P0 → P4, three resource types, A, B, C.

Type A has 10 instances, B has 5 instances, C has 7 instances.

At time T0 the following snapshot of the system is taken.

7: Deadlocks 13

Is the system

in a safe state?

Deadlock

Avoidance

134200P4

110112P3

006203P2

020002P1

233347010P0

CBACBACBA

→Avail→Req→Aloc

Max Needs = allocated + can-be-requested

Deadlock Avoidance

Let's assume a very simple model: each process declares its maximum needs. In this case,
algorithms exist that will ensure that no unsafe state is reached.

Do these examples:

Consider a system with: five processes, P0 → P4, three resource types, A, B, C.

Type A has 10 instances, B has 5 instances, C has 7 instances.

At time T0 the following snapshot of the system is taken.

14

Process Allocation

A B C

Max

A B C

Available

A B C

P1 0 1 0 7 5 3 3 3 2

P2 2 0 0 3 2 2

P3 3 0 2 9 0 2

P4 2 1 1 2 2 2

P5 0 0 2 4 3 3

Need an algorithm that determines if deadlock occurred.

15

Deadlock Detection

SINGLE INSTANCE OF A RESOURCE TYPE

• Wait-for graph == remove the resources from the usual graph and collapse
edges.

• An edge from p(j) to p(i) implies that p(j) is waiting for p(i) to release.

So, the deadlock has occurred. Now, how do we get the resources
back and gain forward progress?

PROCESS TERMINATION:

• Could delete all the processes in the deadlock -- this is
expensive.

• Delete one at a time until deadlock is broken (time consuming
).

• Select who to terminate based on priority, time executed, time
to completion, needs for completion, or depth of rollback

• In general, it's easier to preempt the resource, than to terminate
the process.

16

Deadlock Recovery

Deadlock Recovery

RESOURCE PREEMPTION:

•Select a victim - which process and which resource to
preempt.

•Rollback to previously defined "safe" state.

•Prevent one process from always being the one
preempted (starvation).

17

THANK YOU

18

	Slide 1
	Slide 2
	Slide 3: DEADLOCK
	Slide 4
	Slide 5: DEADLOCK NECESSARY CONDITIONS
	Slide 6: RESOURCE ALLOCATION GRAPH
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Deadlock Avoidance
	Slide 15
	Slide 16
	Slide 17: Deadlock Recovery
	Slide 18: THANK YOU

